

Alignment of fellowship training and job needs in **Molecular Genetic Pathology**

Karen L Kaul, Rebecca Johnson, Anthony Schlinsog, Aaron Douglas and John Lemke Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, and American Board of Pathology, Tampa, FL

INTRODUCTION

In the two decades since ACGME-accredited MGP fellowships have existed and the ABPath has been offering a certification examination, the field has evolved considerably. The ABPath undertook a survey of MGP diplomates participating in Continuing Certification (formerly MOC) to assess the alignment of practice and training needs.

METHODS

From 2017 to 2018, 119 of 327 (36%) eligible MGP diplomates responded to a survey detailing their fellowship training and current professional duties (MGP alone or combined with other pathology subspecialties). Additional survey questions addressed the amount of training received in several areas compared to what was needed for their current jobs. Individual survey question non-response rates ranged from 9% to 13% of the 119 respondents. Half the respondents were between 4 and 7 years of completing training.

Results

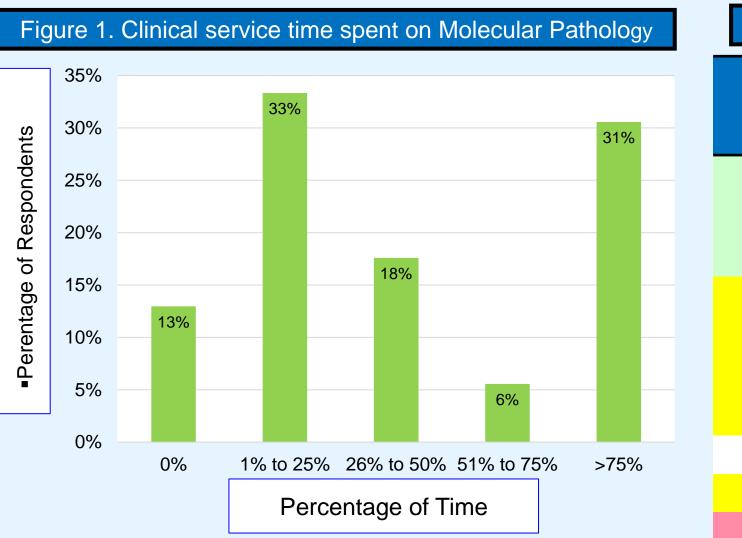
Of those diplomates in active practice, 66% were in an academic medical center, and 16% in a non-academic center or central lab; the median group size was 25 FTE pathologists. Approximately 1/3 of diplomates spent most or all of their time on MGP, with another third spending less than 25% of their time doing MGP, and 13% doing none at all. For those dividing MGP duties with other pathology roles, AP sign-out (including hematopathology) was by far the most common combination. This paralleled fellowship training patterns: 28% of diplomates did MGP alone, 23% did MGP with hematopathology and 32% did a combination with surgical pathology or an anatomic pathology subspecialty. Within MGP sign-out duties, sub-specialization is also evident. Methods and applications in MGP have changed significantly with training needs evolving over time. Most respondents felt appropriately trained in many areas, including molecular genetic principles, basic techniques and methods, Sanger sequencing, single gene assays, and FISH for prenatal, heme and solid tumor applications. Similarly, most respondents considered training in preparation for today's practice was adequate for bone marrow engraftment, MSI, cytogenetics, and inherited disease testing; though some had less need for these skills. It is noteworthy that many respondents felt little need for training in molecular microbiology (including detection, sequencing, antimicrobial resistance, virology, or microbiome); genetic counseling; pharmacogenomics; HLA and parentage testing. In contrast, areas commonly identified as important or very important in their current role, but not enough training, were NGS genomic data analysis, assay validation, QA, regulatory, ethical and legal issues, and laboratory management.

References

P.H. Byers. Molecular genetic pathology: coming of age in the molecular world. J. Mol Diagn, 1 (1999), pp. 3-4

The Association for Molecular Pathology Training and Education Committee. Goals and objectives for molecular pathology education in residency programs. J Mol Diagn, 1 (1999), pp. 5-15 D.L. Aisner, A. Berry, D.B. Dawson, et al.. A suggested molecular pathology curriculum for

residents. J Mol Diagn, 18 (2016), pp. 153-162 R.L. Haspel, R. Arnaout, L. Briere, et al. A curriculum in genomics and personalized medicine for


pathology residents. Am J Clin Pathol (2010), p. 133 I. Schrijver, Y. Natkunam, S. Galli, S.D. Boys. Integration of genomic medicine into pathology residency training: the Stanford open curriculum. J Mol Diagn, 15 (2013), pp. 141-148

A.A. Killeen, W.-C. Leung, D. Payne, K., et al. Certification in molecular pathology in the United States. (Training and Education Committee, the Association for Molecular Pathology). J Mol Diagn, 4 (2003), pp. 181-184

A.C. Mackinnon, Y.L. Wang, A. Sahota, C.C. Yeung, K.E. Weck. Certification in molecular pathology in the United States: an update from the Association for Molecular Pathology Training and Education Committee. J Mol Diagn, 14 (2012), pp. 541-549

S. Taylor, K.M. Bennett, J.L. Deignan, et al.. Molecular pathology curriculum for medical laboratory scientists: a report of the Association for Molecular Pathology Training and Education Committee. J Mol Diagn, 16 (2014), pp. 288-296

M.L. Talbert, S.T. Dunn, J. Hunt, D.R. et al. Competency-based education for the molecular genetic pathology fellow: a report of the Association for Molecular Pathology Training and Education Committee. J Mol Diagn, 11 (2009), pp. 497-507

Table 1: Where do MGP d

Practice setting

- Academic Medical Center
- Non-academic Medical Center
- System Central Lab
- Forensic Lab
- Military/Government
- Physician office
- Specialty/POD lab
- Stand alone lab

Table 2: Distribution of signout duties				
Clinical area	% of respondants	% of time		
MGP alone	28	9 (33%): 1-25% 8 (32%): >75%		
AP with MGP	32	Variable		
Hematopathology	23	Varable		
Cytopathology	14	<25%		
Forensic/Autopsy	14	<25%		
Micro	5	<25%		
Chemistry	10	<25%		
Transfusion medicine	6	<25%		

plomates work?			
% of respondants			
66%			
13.5%			
3%			
1%			
2%			
2%			
8%			
5%			

Table 3: Importance to job and training needs			
Topic	Importance to Job	Amount of training	
Molecular Genetic Principles	High	About right	
Molecular Techniques	High	About right	
Single gene assays	High	About right	
NGS: Somatic/cancer	High	Not enough	
NGS: germline/inherited	Variable	Not enough	
Whole exome sequencing	Variable	Almost enough	
Whole genome sequencing	Variable	Almost enough	
Sanger sequencing	Variable	Enough	
Genomic Analysis	High	Not enough	
Array CGH	Low	About right	
Other arrays	Low	About right	
FISH prenatal	Variable	About right	
FISH Heme	Variable	About right	
Bone Marrow engraftment	Variable	About right	
Microsatellite instability	Variable	About right	
Inherited diseases	Variable	About right	
Cytogenetics	Variable	About right	
Genetic Counseling	Moderate/low	About right	
Molecular Detection Microbes	Moderate/low	About right	
Viral Load Quantitation	Moderate/low	About right	
Molecular resistance testing	Low	About right	
Microbial Sequencing	Low	About right	
Microbiome	Low	None	
Pharmacogenomics	Low	About right	
HLA	Low	About right	
Identity/Parentage	Low	About right	
Assay Validation/verification	High	Not enough	
QI/QA	High	Not enough	
Regulatory requirements	High	Not enough	
Ethical issues	High	Not enough	
Lab Management	High	Not enough	
CONCLUSIONS There is a biphasic distribution of duties in practice, with equal proportions of			

There is a biphasic distribution of duties in practice, with equal proportions of diplomates practicing MGP alone vs combined with other disciplines. Certain areas are rarely practiced; MGP combined with AP subspecialties and hematopathology is most common. These data highlight variable and changing training and practice patterns among MGP diplomates, and may be useful in better aligning training and certification with the needs in MGP practice.